Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Asymmetric nitroaldol reaction using nitromethane labeled with $¹¹C$ </sup>

Koichi Kato^{a,b,*}, Sven Åke Gustavsson^{a,c}, Bengt Långström^{a,c,*}

^a Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, SE753 23 Uppsala, Sweden b
Department of Molecular Probes, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

^cUppsala Imanet, GE Healthcare, Box 967, SE751 05 Uppsala, Sweden

article info

Article history: Received 22 February 2008 Revised 10 July 2008 Accepted 14 July 2008 Available online 17 July 2008

ABSTRACT

Nitro[$11C$]methane produced from [$11C$]O₂ reacted with several aldehydes in the presence of chiral metal catalyst prepared from LaLi₃{tris(binaphtoxide)}, n-BuLi, H₂O, and (R)-binaphtol. The molar ratios of La, Li, and binaphtol for effective catalysis in the 11 C-labeling were 1/4/4.5 and 1/4/6, respectively. The 11 C-nitroaldol products were obtained in 3-25% radiochemical yields with 39-51% ee within 20 min starting from the preparation of nitro $[11C]$ methane.

- 2008 Elsevier Ltd. All rights reserved.

The positron-emitting radionuclide ¹¹C ($T_{1/2}$ = 20.3 min) which is frequently used to prepare tracers and compounds labeled by $11C$, can be utilized for in vivo imaging by positron emission tomography (PET). PET has been recognized as a useful tool for clinical diagnosis and the drug development process.^{[1](#page-2-0)} Several constraints are limiting the development of new $11C$ -labeling methodology; rapid reaction under sub-micro molar scale, limited number of labeling precursors, and a need for remote-controlled system for radiation protection.^{[2](#page-2-0)}

Asymmetric labeling synthesis promoted by a chiral organometallic catalyst offers a new prospect for $11C$ -labeling chemistry. The methodology needs to be further explored, especially considering the time constraints. 3 The chiral center often plays an important role in biological activity; therefore, asymmetric $11C$ -labeling synthesis is sometimes required for precise PET analysis. Asymmetric $11C$ -labeling syntheses have been carried out by enzymatic synthesis or using chiral handles; $4,5$ however, these methods require a limited number of available substrates, resulting in no significant impact on further development. The recent progress in asymmetric catalysis by organometallics has shown exciting potential to solve such problems.^{[6](#page-2-0)} Although chemical and technical problems caused by the use of short-lived radioisotopes complicate asymmetric labeling synthesis, the use of an organometallic catalyst is attractive for ¹¹C-labeling synthesis and should be considered for further exploration.

We focused on the asymmetric nitroaldol reaction using $[$ ¹¹C]H₃NO₂ (1) as a model. Nitroaldol products can be transformed to β -amino alcohols,^{[7](#page-2-0)} which are structural elements of interesting biological compounds with potential to become valuable PET tracers. The asymmetric catalysts LLB (2) and LLB-II (3) (Fig. 1), developed by Shibasaki and co-workers, are binaphtol-modified La–Li bimetallic catalysts that are effective in the asymmetric nitroaldol reaction[.8,9](#page-2-0) Catalysts 2 and 3 may be useful because they are prepared and used in the presence of water.^{8a} Easy and reliable handling of the catalyst is crucial to minimize technical problems caused by the special conditions of radiolabeling, therefore, 2 and **3** were considered to be appropriate for 11 C-labeling. In this Letter, we describe asymmetric nitroaldol reactions using 1 in combination with the modification of 2 and 3 as a first attempt for use as an asymmetric catalyst for 11 C-labeling.

Including purification and formulation, the whole procedure should be rapid, aiming at less than 1 h; therefore, the actual $11C$ -labeling is often terminated within 5 min in order to obtain a high radiochemical yield, considering the competing decay both of products and starting material.^{[2](#page-2-0)} Thus in syntheses using shortlived radionuclides, a higher reaction temperature is preferred in order to speed up reaction rates and obtain a higher radiochemical yield of the labeled product. The $¹¹C$ -labeling reactions performed</sup> in this paper proceeded at $-10\,^{\circ}\mathrm{C}$ and room temperature. Although -50 °C was employed as a reaction temperature to obtain high ee in Shibasaki's reports, there was a compromise between ee and radiochemical yield.

Cyclotron-produced $[{}^{11}C]O_2$ was immediately transformed into $[$ ¹¹C]H₃I via reduction by lithium aluminum hydride (LAH) and subsequent iodination by hydroiodic acid (HI). $[$ ¹¹C $]$ H₃I was then converted to 1 via nitration by passing through a heated column

Figure 1. Structures of 2, 3 and 4.

Corresponding authors. Tel.: +81 43 206 4042; fax: +81 206 3261 (K.K.); tel.: $+46$ 18 66 6900; fax: $+46$ 18 18 0932 (BI)

E-mail addresses: katok@nirs.go.jp (K. Kato), Bengt.Langstrom@biorg.uu.se (B. Långström).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.07.074

$$
{}^{11}CO_2 \xrightarrow{1. \text{ LAH, rt}} {}^{11}CH_3 \qquad {}^{11}CH_3 \qquad \frac{\text{AgNO}_2}{70 \text{ °C}} \xrightarrow{11} {}^{11}CH_3 \qquad \qquad \text{NO}_2
$$

Figure 2. Preparation of 1.

containing silver nitrite and dried potassium carbonate (Fig. 2). $10,11$ Catalysts 2 and 3 with molar ratios of La, Li, and $(R)-(+)$ -1,1'-bi-2-naphtol (4) of 1/3/3 and 1/4/3, respectively, were prepared in accordance with the literature by using $La(O-i-Pr)_3$, n-BuLi, and $\mathbf{4.}^{\text{8a}}$ The reaction between **1** and 3-phenylpropanal (**5**) was selected to explore the feasibility of $¹¹C$ -labeling by an asymmetric nitro-</sup> aldol reaction because the ee value of the reaction between $CH₃NO₂$ and 5 was high under the catalytic condition given in the literature (73% ee).^{8b} The initial labeling reaction was carried out using 2. The radioactivity of 1 using studies was 0.2–2 GBq. The mol amounts of 1 were uncertain, however, they could be estimated at less than 100 nM.¹² The reaction afforded 6 in approximately 50% ee, but radiochemical yield was less than 1% (Eq. 1).

When the same reaction was carried out using 3, the 11 C-labeling reaction provided 6 in 50% radiochemical yield (Eq. 2); however, product 6 was racemic (Eq. 2). In the literature, catalyst 3 afforded nitroaldol products in similar enantioselectivity and higher reactivity than 2 under catalytic conditions; $8a$ however, the $11C$ labeling reaction mediated by 3 yielded a racemic mixture.

1 + 5
$$
\frac{3.7HF}{-10 \text{ °C}, 5 min}
$$
 6
50% yield
0% ee
0%

LDI-TOF MS analysis of a solution of 2 suggested that the solution contained mixtures of complexes comprising several molar ratios of Li, La, and 4^{8c} We considered that there was equilibrium in the catalyst formation of 3, and free LiOH resulted from the equilibrium at the higher reaction temperature employed for $¹¹C$ -label-</sup> ing conditions. The resulting free LiOH can mediate nitroaldol reactions and cause problems with the racemic product. Thus, the effect of a further addition of 4 to a solution of 3 was investigated in order to force the equilibrium to form 3 with higher concentration and suppress the existence of free LiOH. Catalyst solutions with three different ratios of Li, La, and 4 were used to explore ee and the radiochemical yield of the reactions (Table 1). First, 1 mol equiv of 4 was added to 3 to form a molar ratio of $1/$ $4/4$ for Li, La, and 4 (catalyst A). In catalyst solution A , free LiOH was assumed to be consumed. The labeling reaction mediated by **A** afforded **6** in 15% ee at $-10\,^{\circ}\textrm{C}$ (Table 1, entry 1). Compared to

Table 1

^a Yields were decay-corrected radiochemical conversion.

b Determined by radio-HPLC.

Table 2

^a Yields were decay-corrected radiochemical conversion. **b** Determined by radio-HPLC.

the enantioselectivity of the 11 C-labeling reaction obtained by A and 2, catalyst A might not suppress the racemic reaction completely; therefore, the following catalyst solution was prepared by adding 1.5 mol equiv of 4 to 3, forming a molar ratio of La, Li, and **4** of $1/4/4.5$ (catalyst **B**). The labeling reaction mediated by **B** afforded 6 in 44% ee (entry 2) at -10 °C. Under ¹¹C-labeling conditions, B gave similar ee of the product as 2 and higher radiochemical yield (9%) .^{13,14} Stoichiometric reaction using cat **B** for CH₃NO₂ was carried out in the presence of 3 mol equiv of **5** at -10 °C. The reaction gave non-labeled 6 in 69% yield and 39% ee for 20 h.^{[15](#page-2-0)} When the $11C$ -labeling reaction mediated by **B** was carried out at room temperature, the reaction afforded 6 in higher radiochemical yield (29%), but in lower enantioselectivity (9% ee, entry 3). When 3 mol equiv of 4 was added to 3, a molar ratio of La, Li, and 4 of $1/4/$ 6 of the catalyst solution (catalyst C) was obtained. The ¹¹C-labeling reaction mediated by C afforded 6 in similar enantioselectivity (39%) and higher radiochemical yield (25%) as B at room temperature.

The reactions between 1 and benzaldehyde (7a) or other aromatic aldehydes 7b, 7c were also explored. In the literature, the ee value of the reaction between $CH₃NO₂$ and **7a** was moderate (approximately 40% ee) under the catalytic condition using 2 ^{[16](#page-2-0)} however, ¹¹C-labeled nitroaldol products derived from aromatic aldehydes are interesting as PET tracers.^{7b} All ¹¹C-labeling reactions were carried out by catalyst solution **B** at -10 °C. The ¹¹Clabeling reaction for **7a** afforded **8a** in 51% ee at -10 °C (Table 2, entry 1). The ee value of 8a was higher than the reported ee value of the catalytic condition at -40 °C even though a higher reaction temperature was employed for $11C$ -labeling reaction. The molar amount of 7a to 1 may play an important role in the ee value of **8a.** Excess $CH₃NO₂$ to aldehyde was usually used under catalytic conditions; however, a minute amount of 1 could be used under the ¹¹C-labeling conditions presented here. The undesired side reaction might be suppressed in the reaction between 1 and 7a, affording 8a in higher ee than the reaction performed under catalytic conditions. The 11 C-labeling reactions for **7b**, **7c** afforded **8b** and 8c in 41% ee and 39% ee, respectively. No significant difference was observed for ee values of 8b and 8c (entries 2 and 3).

In summary, we investigated the asymmetric nitroaldol reaction for 1 and several aldehydes. Enantioselective $11C$ -labeling mediated by organometallic catalysts was performed and the ee values of products were moderate but this is a first step to fuse organometallic asymmetric catalysis and radiolabeling synthesis. Recently, several environmentally friendly catalysts have been developed, allowing reactions to be performed in the presence of water, 17 and some of these catalysts will further support the progress of radiolabeling chemistry and PET tracer development.

Acknowledgment

This work was supported by a Postdoctoral Fellowship for Research Abroad from JSPS (K.K.).

References and notes

- 11. Gustavsson, S. Å.; Kato, K.; Långström, B. J. Labelled Compd. Radiopharm. 2003, 46, 1279–1285.
- 1. Principles of Nuclear Medicine, 2nd ed.; Wagner, H. N. J., Szabo, Z., Buchanan, J., Eds.; W.B. Saunders: Philadelphia, PA, 1995.
- 2. Långström, B.; Kihlberg, T.; Bergström, M.; Antoni, G.; Björkman, M.; Forngren, B. H.; Forngren, T.; Hartvig, P.; Markides, K.; Yngve, U.; Ögren, M. Acta Chem. Scand. 1999, 53, 651–669.
- 3. Långström, B.; Obenius, U.; Sjöberg, S.; Bergson, G. J. Radioanal. Chem. 1981, 64, 273–280.
- 4. (a) Bjurling, P.; Watanabe, Y.; Oka, S.; Nagasawa, T.; Yamada, H.; Långström, B. Acta Chem. Scand. 1990, 44, 183–188; (b) Maeda, M.; Nishimura, S.; Fukumura, T.; Kojima, M. J. Labelled Compd. Radiopharm. 1988, 25, 233–245.
- 5. Fasth, K. J.; Hörnfeldt, K.; Långström, B. Acta Chem. Scand. 1995, 49, 301–304. 6. Comprehensive Asymmetric Catalysis;Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999.
- 7. (a) Norris, T.; Braish, T. F.; Butters, M.; DeVries, K. M.; Hawkins, J. M.; Massett, S. S.; Rose, P. R.; Santafianos, D.; Sklavounos, C. *J. Chem. Soc., Perkin Trans. 1 2000,*
1615–1622; (b) Någren, K.; Schoeps, K.-O.; Halldin, C.; Swahn, C.-G.; Farde, L. Appl. Radiat. Isot. 1994, 45, 515-521; (c) Kato, K.; Zang, M.-R.; Suzuki, K. Mol. BioSyst. 2008, 4, 53–55.
- 8. (a) Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem. Eur. J. 1996, 2, 1368–1372; (b) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418-4420; (c) Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura, K.; Shibasaki, M. J. Am. Chem. Soc. 1993, 115, 10372– 10373; (d) Sasai, H.; Suzuki, T.; Itoh, N.; Arai, S.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 2657–2660.
- 9. (a) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861–863; (b) Evans, D. A.; Seidel, D.; Rueping, M.; lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692–12693; (c) Kogami, Y.; Nakajima, T.; Ikeno, T.; Yamada, T. Synthesis 2004, 1947–1950; (d) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881–3884; (e) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Venttici, C. Chem. Commun. 2007, 616–618.
- 10. Schoeps, K.-O.; Stone-Elander, S.; Halldin, C. Int. J. Radiat. Instrum. Part A 1989, 40, 261–262.
- 12. The specific activity of 1 was not determined, but it could be considered to have similar value as $[^{11}C]H_3I$ (around or higher than 37 GBq/µmol) due to no isotope contamination during nitration reaction.
- 13. Typical procedure of asymmetric nitroaldol reaction: $\left[$ ¹¹C $\right]$ Carbon dioxide was produced by the ¹⁴N $\left[p,\alpha\right]$ ¹¹C nuclear reaction using a nitrogen gas target containing 0.05% oxygen bombarded with 17 MeV pr dioxide was reduced by 0.2 M LiAlH₄ solution in THF (500 μ L), and thereafter THF was evaporated. To the residue, a 54% HI aqueous solution (1 mL) was added and the mixture was heated at 130 °C to give $[1^1C]H_3I$ in the gas phase. **1** was prepared by passing $[{}^{11}C]H_3$ I through a column filled with silver nitrite at $70 °C$ and dried potassium carbonate. 1 was trapped in a 0.03 M catalyst solution in THF (300 μ L). The reaction mixture was placed in a cooling bath and 5 lL of the aldehyde was added. After 5 min, a saturated solution of aqueous ammonium chloride (100 μ L) was added to quench the reaction mixture. The contents of the vial were diluted and the formed product was purified by semipreparative HPLC.
- 14. Catalyst solution of B was prepared as below. To a solution of 4 (856 mg, 3 mmol) in THF (13 mL) a 1.6 M solution of n-BuLi (1.25 mL, 2 mmol) in hexane was added at 0^oC . Soon a clear solution was changed to suspension, then a 0.2 M solution of $La(O-i-Pr)_3$ (2.5 mL, 0.5 mmol) in THF was added at room temperature. After mixture was stirred overnight, water (9 μ L, 0.5 mmol) was added and the resulting catalyst solution was stored at room temperature.
- 15. ¹H NMR was measured for a mixture of 4 and non-labeled 6. Non-labeled 6 was detected by GC and HPLC in the mixture. Yield was determined by HPLC using methyl 4-chlorocinnamate as an internal standard. Ee was determined by HPLC using CHIRALPAK AD-H (DAICEL).
- 16. Shibasaki et al. reported that using other lanthanide metal for catalysts gave corresponding nitroaldol product in good ee for this reaction. Details are described in Ref. 8d.
- 17. Li, C.-J. Chem. Rev. 2005, 105, 3095–3165.